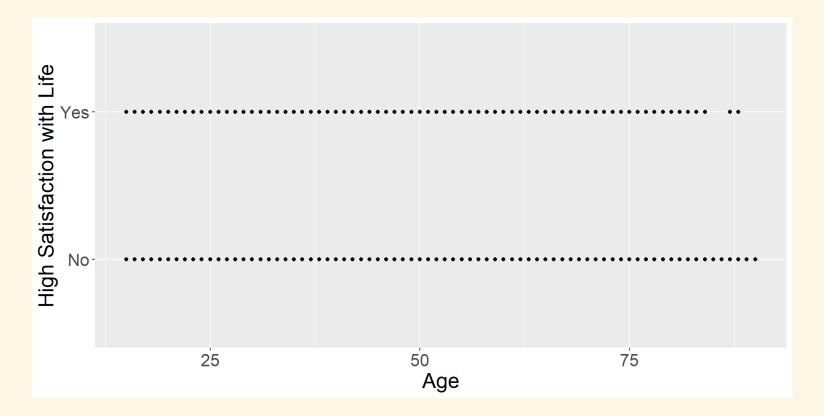
GENERALIZED LINEAR MODELS FOR BINARY SURVEY VARIABLES **LOGISTIC REGRESSION**

Yongchao Ma ytma@umich.edu

Jul 1 2024

WHY LOGISTIC REGRESSION

• When the dependent variable can only be 0 or 1, do we want to draw a straight line through?



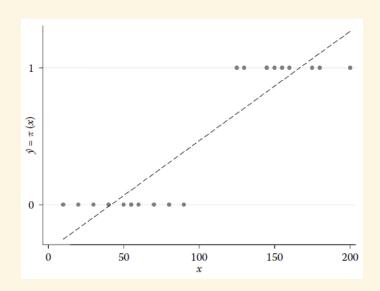
 Rather than predicting these two values, we try to model the probabilities that the dependent variable takes one of these two values

LINEAR TO LOGISTIC REGRESSION

Consider a linear regression

$$oldsymbol{\pi} = \Pr(y=1|\mathbf{x}) = B_0 + B_1x_1 + \cdots + B_px_p + e$$

• The probability must be between 0 and 1, but the linear predictor $m{\eta}=B_0+B_1x_1+\cdots+B_px_p$ on the right hand side can take any real number



 Transform the probability to remove the range restrictions, and model the transformation as a linear function of the covariates

NEAR TO LOGISTIC REGRESSION

• First, we move from the probability [0,1] to the odds $(0,\infty)$

$$\text{odds} = \frac{\Pr(y=1|\mathbf{x})}{\Pr(y=0|\mathbf{x})} = \frac{\boldsymbol{\pi}}{1-\boldsymbol{\pi}} = e^{B_0 + B_1 x_1 + \dots + B_p x_p}$$

• Second, we take logarithms to move from the odds to the log-odds $(-\infty, +\infty)$

$$\operatorname{logit}(oldsymbol{\pi}) = \ln\!\left(rac{oldsymbol{\pi}}{1-oldsymbol{\pi}}
ight) = B_0 + B_1 x_1 + \dots + B_p x_p$$

ullet Logarithmic transformation maps probabilities from the range [0,1] to the entire real line. The probability can be solved from the logit model

$$m{\pi} = rac{e^{B_0 + B_1 x_1 + \cdots + B_p x_p}}{1 + e^{B_0 + B_1 x_1 + \cdots + B_p x_p}} = rac{1}{1 + e^{-(B_0 + B_1 x_1 + \cdots + B_p x_p)}}$$

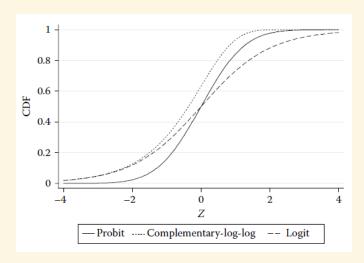
LINEAR TO LOGISTIC REGRESSION

- The binary dependent variable y is assumed to follow a binomial distribution
 - $\mathbf{E}(y) = n\pi$

 - The mean and variance depend on the underlying probability π
 - lacktriangle Any covariate x that affects the probability also affects both the mean and variance
- Normality and homoscedasticity assumptions are violated
 - Least squares estimation is not appropriate
 - Maximum likelihood estimation is used

GENERALIZED LINEAR MODELS

- Generalized linear models have three components
 - Distribution of the dependent variable
 - Linear predictor $oldsymbol{\eta} = B_0 + B_1 x_1 + \cdots + B_p x_p$
 - Link function: the transformation that describes how the mean of the dependent variable is related to the linear predictor $g\left(\mathrm{E}(y|\mathbf{x})\right)=\eta$
 - $\circ \operatorname{Logit} g(oldsymbol{\pi}) = \ln ig(rac{oldsymbol{\pi}}{1-oldsymbol{\pi}} ig)$
 - \circ Probit $g(m{\pi}) = \Phi^{-1}(m{\pi})$ where Φ is the standard normal cumulative distribution function
 - \circ Complementary log-log $g(oldsymbol{\pi}) = \ln(-\ln(1-oldsymbol{\pi}))$



MODEL ESTIMATION UNDER SRS

- The logistic regression model is estimated using maximum likelihood estimation
- The likelihood function for a SRS of n independent binomial observations is the product of the probabilities of observing the data given the parameters

$$L(m{eta}) = \prod_{i=1}^n {(\pi_i)^{y_i}} {(1-\pi_i)^{1-y_i}}$$

- Estimate parameters
 - lacktriangle Take the 1st derivative of $\ln L(oldsymbol{eta})$ with respect to each parameter, set them to zero, and solve for the parameters
 - No closed-form solution, iterative methods (e.g., Newton-Raphson algorithm) are used
- Estimate variance of parameter estimates
 - Take the 2nd derivative of $\ln L(\beta)$ with respect to each parameter, evaluate at the maximum likelihood estimate, and invert to obtain the variance-covariance matrix of the parameter estimates

MODEL ESTIMATION UNDER COMPLEX SAMPLING

- Maximum likelihood estimation is not appropriate for complex sample designs
 - probability of selection is not constant across observations
 - observations are not independent due to clustering or stratification
- Consider complex sampling from a finite population, pseudo-maximum likelihood estimation is used to estimate regression parameters

$$PL(\mathbf{B}) = \prod_{i=1}^n \left((\pi_i)^{y_i} (1-\pi_i)^{1-y_i}
ight)^{w_i}$$

with

$$\pi_i = rac{e^{x_i \mathbf{B}}}{1 + e^{x_i \mathbf{B}}}$$

MODEL ESTIMATION UNDER COMPLEX SAMPLING

- Estimate parameters
 - Maximize the weighted pseudo-likelihood function using the iterative method as in the standard maximum likelihood estimation
- Estimate variance of parameter estimates
 - Taylor series estimation
 - Replication methods (JRR or BRR)

TESTS OF MODEL PARAMETERS

Wald test

- Test the null hypothesis that a parameter is equal to 0
- The test statistic is the ratio of the parameter estimate to its standard error
- The test statistic is referred to Student t distribution with design-based degrees of freedom
- Alternatively, we can treat the square of the test statistic as a χ^2 statistic with one degree of freedom

Likelihood ratio test

- Compare the likelihood of the model with the parameter of interest to the likelihood of the model without the parameter of interest
- The test statistic is twice the difference in the log-likelihoods of the two models
- The test statistic is referred to a χ^2 distribution with the difference in the number of parameters between the two models
- Not applicable to complex sample designs

REGRESSION DIAGNOSTICS

- Goodness of Fit (for SRS)
 - Pearson, Deviance
 - Hosmer-Lemeshow test
 - Classification table
 - Area under the ROC curve
 - Psuedo- R^2
- Influence and Outliers
 - Cook's distance
 - "Hat" matrix
 - Change in χ^2 statistic due to deletion of observations

- Data: National Comorbidity Survey Replication (NCS-R)
- Question: Assess the significance of potential predictors of having lifetime major depression for adults greater than 17 years of age
- Dependent variable:
 - Lifetime major depression (1=Yes; 0=No)
- Predictors:
 - Age (1=18-29; 2=30-44; 3=45-59; 4=60+)
 - Sex (1=Male; 2=Female)
 - Alcohol dependence (1=Yes; 0=No)
 - Education (1=0-11; 2=12; 3=13-15; 4=16+ years)
 - Marital status (1=Married; 2=Previously Married; 3=Never Married)

BIVARIATE ANALYSIS

1 # Specify survey design

```
data: svychisq(\simmdec + sexc, design = ncsrsvyp2)
F = 44.834, ndf = 1, ddf = 42, p-value = 3.965e-08
```

Pearson's X^2: Rao & Scott adjustment

ODDS RATIO

	% Having lifetime major depression	Odds
Male	0.1528926	$\frac{0.1528926}{1-0.1528926} = 0.1804879$
Female	0.2261705	$\frac{0.2261705}{1-0.2261705} = 0.2922743$

Odds ratio

$$OR = \frac{odds_{female}}{odds_{male}} = \frac{0.2922743}{0.1804879} = 1.619$$

• The odds of having lifetime major depression are 1.619 times higher for females than for males

MODEL SPECIFICATION AND ESTIMATION: SINGLE PREDICTOR

```
1 model1 <- svyqlm(mdec ~ sexc,</pre>
                    design = ncsrsvvp2, family = quasibinomial)
 3 summary (model1)
Call:
svyqlm(formula = mdec ~ sexc, design = ncsrsvyp2, family = quasibinomial)
Survey design:
svydesign(id = ~seclustr, strata = ~sestrat, weights = ~ncsrwtlg,
    data = ncsrp2, nest = TRUE)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.71209 0.07055 -24.27 < 2e-16 ***
sexcFemale 0.48203 0.07237 6.66 4.98e-08 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1
```

INTERPRETATION: SINGLE PREDICTOR

- Logistic regression coefficients represent the change in the log-odds of the dependent variable for a one-unit increase in the predictor, holding all other variables constant
 - The coefficient for Sex is 0.48203
 - This means that being female (compared to the reference category, which is male) is associated with an increase in the log-odds of having lifetime major depression
- To make the interpretation more intuitive, we often exponentiate the coefficient to obtain the odds ratio

$$ext{OR} = rac{ ext{odds}_{ ext{female}}}{ ext{odds}_{ ext{male}}} = rac{e^{B_0 + B_1}}{e^{B_0}} = e^{B_1}$$

INTERPRETATION: SINGLE PREDICTOR

```
(Intercept) sexcFemale 0.1804879 1.6193566
```

exp (model1\$coef)

 \bullet The odds ratio indicates that the odds of having lifetime major depression are 1.619 times higher for females than for males

MODEL SPECIFICATION AND ESTIMATION: MULTIPLE PREDICTORS

```
1 model2 <- svyglm(mdec ~ sexc + ag4catc + aldc + ed4catc + mar3catc,
                                                                                       design = ncsrsvvp2, family = quasibinomial)
              summary(model2)
Call:
svyqlm(formula = mdec ~ sexc + aq4catc + aldc + ed4catc + mar3catc,
                design = ncsrsvvp2, family = quasibinomial)
Survey design:
svydesign(id = ~seclustr, strata = ~sestrat, weights = ~ncsrwtlg,
                data = ncsrp2, nest = TRUE)
Coefficients:
                                                                                                               Estimate Std. Error t value Pr(>|t|)
                                                                                                               -2.16042 0.15214 -14.200 2.30e-15 ***
 (Intercept)
sexcFemale
                                                                                                                  0.25562 0.09438 2.708 0.0108 *
ag4catc30-44
ag4catc45-59
                                                                                                                   0.20645 0.09153 2.256 0.0311 *
                                                                                                                                                         \( 1 \lambda 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1 \) \( 1
```

0 (7570

INTERPRETATION: MULTIPLE PREDICTORS

1 exp(model2\$coef)

```
(Intercept)
                                        sexcFemale
            0.1152765
                                         1.7813032
         ag4catc30-44
                                      aq4catc45-59
            1.2912600
                                         1.2293019
           ag4catc60+
                                           aldcYes
            0.5087563
                                         4.1523575
            ed4catc12
                                      ed4catc13-15
            1.0824803
                                         1,2592434
           ed4catc16+ mar3catcPreviously Married
            1,1769489
                                         1,6264870
mar3catcNever Married
            1.1225236
```

 \bullet The odds ratio indicates that the odds of having lifetime major depression are 1.781 times higher for females than for males, holding all other variables constant

TESTS OF MODEL PARAMETERS

1 # Wald test
2 regTermTest(model2, ~ag4catc)

```
Wald test for ag4catc
in svyglm(formula = mdec ~ sexc + ag4catc + aldc + ed4catc + mar3catc,
          design = ncsrsvyp2, family = quasibinomial)
F = 19.98292 on 3 and 32 df: p= 1.7536e-07
```

- The svy: logit and svy: logistic commands
 - svy: logistic defaults to odds ratio output; coef option yields logistic model parameter estimates
 - svy: logit defaults to log-odds (B) output; or option yields odds ratios "i." prefix defines categorical predictors
 - Default to lowest alphanumeric category for reference
 - Change reference category for categorical predictors using ib#.
 - Post-estimation test statement for Wald tests of multi-parameter hypotheses
 - e.g. (for ASDA Chapter 8 example), to test the null hypothesis that all of the parameters associated with Age are equal to zero, use this test statement:
 - test 2.ag4cat 3.ag4cat 4.ag4cat

BIVARIATE ANALYSIS

```
svyset seclustr [pweight = ncsrwtlg], strata(sestrat)
svy: tab ag4cat mde, row
svy: tab sex mde, row
svy: tab ald mde, row
svy: tab ed4cat mde, row
svy: tab mar3cat mde, row
```

MODEL SPECIFICATION AND ESTIMATION

```
1 svy: logit mde i.ag4cat ib2.sex ald i.ed4cat i.mar3cat
2 
3 * Estimated odds ratios and 95% CIs can be generated in svy: logit by addin
4 
5 svy: logit mde i.ag4cat ib2.sex ald i.ed4cat i.mar3cat, or
```

WALD TESTS OF MULTI-PARAMETER PREDICTORS

- 1 test 2.ag4cat 3.ag4cat 4.ag4cat
- 2 test 2.mar3cat 3.mar3cat
- 3 test 2.ed4cat 3.ed4cat 4.ed4cat

TEST OVERALL GOODNESS OF FIT

- Use Archer and Lemeshow's (2006, 2007) design-adjusted test to assess the goodness of fit of this initial model
- estat gof (post-estimation command)
- ullet The resulting design-adjusted F-statistic reported in Stata is equal to $F_{A-L}=1.229$, with a p-value of 0.310
 - This suggests that the null hypothesis that the model fits the data well is not rejected
 - We therefore have confidence moving forward that the fit of this initial model is reasonable
- Not presently "canned" in R

COMPARE LOGIT, PROBIT, AND COMPLEMENTARY LOG-LOG MODELS

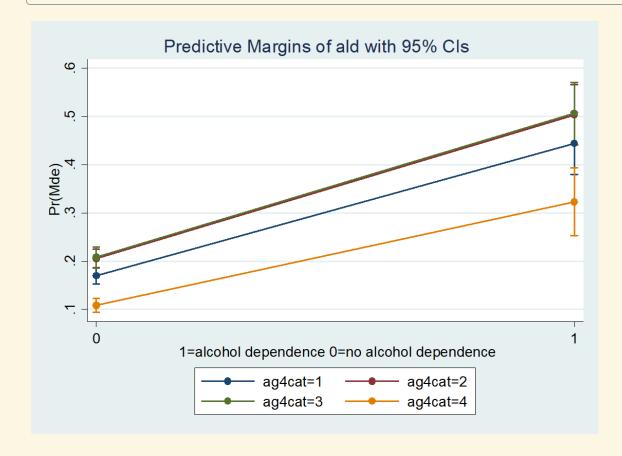
```
1 svy: logit ald i.ag4cat ib2.sex i.ed4cat i.mar3cat
2 svy: probit ald i.ag4cat ib2.sex i.ed4cat i.mar3cat
3 svy: cloglog ald i.ag4cat ib2.sex i.ed4cat i.mar3cat
```

PLOTTING PREDICTED MARGINAL PROBABILITIES AND EFFECTS

- Stata offers extremely easy-to-use post-estimation commands for calculation and plotting of marginal predicted probabilities based on fitted models (not straightforward in R!)
- Default calculation: compute a model-based predicted probability for everyone in the data set as if they all belonged to the same subgroup, and average the predictions
- One can plot marginal predicted probabilities for different subgroups, or average marginal effects (i.e., expected changes in predicted probabilities associated with a one-unit increase in a given predictor)
- The next few slides present some of the examples illustrated in Chapter 8 of ASDA

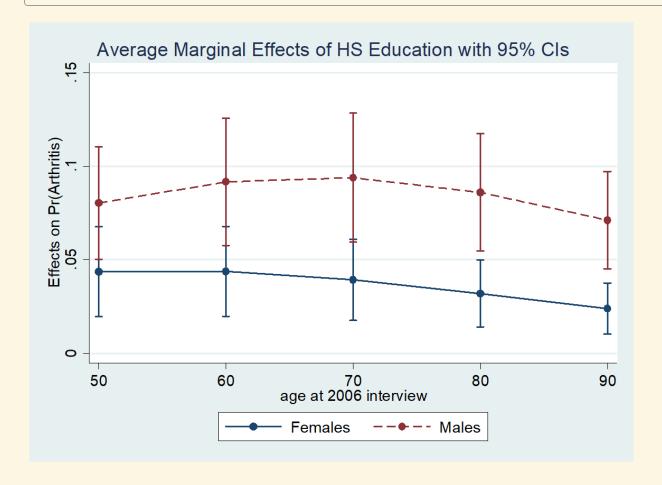
PLOTTING PREDICTED MARGINAL PROBABILITIES AND EFFECTS

- 1 svy: logit mde i.ald i.ag4cat
- 2 margins ald, by(ag4cat)
- 3 marginsplot



PLOTTING AVERAGE MARGINAL EFFECTS

- 1 margins, dydx(2.edcat3) by (male) at (kage=(50(10)90))
- 2 marginsplot



PLOTTING AVERAGE MARGINAL EFFECTS

- margins, dydx(ald) by(ag4cat)
- marginsplot

